AN INTELLIGENT INVESTMENT IN STABILITY FOR SCHOOL BUSES An electronic stability control system may help mitigate rollovers and loss of control on a wide variety of road conditions. Full stability systems like this one deliver more performance than roll-only systems, thanks to additional sensors and braking capability. ## NEEDS FOR SCHOOL BUS STABILITY: - ▶ Detect potential instability situations quickly - ► Intervene quickly - Apply braking where needed - ▶ Perform on wet-, snow-, and ice-covered surfaces # WHAT IS ELECTRONIC STABILITY CONTROL? - First widely used ABS-based stability system capable of recognizing and assisting with both rollover and vehicle under- and over-steer driving situations - Provides a higher level of stability on both dry and wet surfaces compared to systems that focus only on rollover mitigation #### **HOW DOES ESC WORK?** - An ESC system quickly and automatically intervenes to assist the driver if the vehicle is reaching a critical stability threshold - The system can selectively apply vehicle brakes, as well as de-throttle the engine # FEATURES OF ELECTRONIC STABILITY CONTROL - Helps mitigate vehicle slides, skids, and loss of control through advanced monitoring of a variety of vehicle parameters and automatic and selective application of vehicle brakes - Helps mitigate rollovers through advanced sensing and automatic application of vehicle brakes ## THE IMPORTANCE OF ELECTRONIC STABILITY CONTROL FOR SCHOOL BUSES ## **DRIVING SCENARIO:** The vehicle's speed around a curve has exceeded the ability of the tires to hold the vehicle orientation, causing the vehicle to slide and over-steer. #### **SYSTEM RESPONSE:** An ESC system helps to correct the vehicle orientation by reducing speed and, if required, the system quickly applies braking pressure to the appropriate wheels. ## **DRIVING SCENARIO:** A vehicle enters a curve too fast on high friction pavement. The wheels and the pavement create a "hinge" effect allowing the forces at the center of gravity to push the vehicle over. ### **SYSTEM RESPONSE:** An ESC system applies pressure to all brakes and reduces engine throttle to quickly reduce vehicle speed and help reduce the chance of a rollover. The table below identifies the key features and components of an electronic stability control system. | | an electronic stability control system. | | | | |---------------------------|---|---|--|---------------| | | FEATURE | WHAT IT DOES | WHY IT MATTERS | IC Bus
ESC | | Sensor Technology | Wheel Speed
Sensors | Monitors the wheel rotation at individual wheels | Allows the system to
determine vehicle speed
and monitor wheel lock-up
to optimize braking | ~ | | | Lateral
Acceleration
Sensor | Senses the side or lateral forces acting on the vehicle | Side or lateral forces
are used to detect a roll
situation | V | | | Steering Angle
Sensor | Senses the driver's steering and direction | An early indicator of a
potential critical maneuver.
Helps the system to respond
faster and more accurately | ~ | | | Brake Pressure
Sensors | Measures the driver's
braking demand | Allows the system to accurately supplement the driver throughout the maneuver | ~ | | | Yaw Rate
Sensor | Senses the rotation of the vehicle | Allows the system to
monitor the true orientation
of the vehicle and compare
it to the driver's intention | ~ | | | | | | | | BPerformance Enhancements | Multi-level
Sensing | Cross checks multiple system sensors | Improves the reaction time and accuracy of the intervention | ~ | | | Tuning | Different vehicles
have different stability
characteristics. Tuning
adapts the stability
system to account for
these differences | Improves the ability of
the stability system to
match the intervention
of the situation | V | | | All Axle
Braking | The ability to apply brakes at all axles | Provides the best opportunity to reduce vehicle speed in the shortest time | V | | | Individual
Corner Braking | The ability to apply individual brakes | Provides the capability to control under- and over-steer situations | ~ | For more information contact your IC Bus dealer or visit www.ICBus.com.